
分散型バージョン管理システム
（ファイルの変更履歴を管理してくれるシステムのひとつ）

別の開発内容でデバックが発生
した際に途中で開発を中断して、
branchを切り替えてデバック修
正ができる！
完了したら開発にまた戻ればOK

Git内で内容を更新するたびに
ファイルの変更履歴が
記録できるので、
バグが発生しても問題のコードを
見つけやすい！
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Gitとは？

内容を変更するたびにcommit
（履歴またはバッアップ）するので、
コードを書いている途中で、
大きなミスをしても、
ミスする前の状態に戻すことが
できる！



Git

ローカル環境

index

add commit

index_2_3
提出したい！

Work tree

local repository
（自分のPC内にある保管場所）A子さん

.html

.css

index_2_3の中身

アクセス

remote repository
（皆のファイルの保管場所）

C太郎さんB子さんA子さん

techUP受講生

push

C太郎さんB子さんA子さん

fetch

Gitの全体構成図 techUPバージョン

pull
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よく出てくる用語集

・repository …ファイルやディレクトリ（フォルダみたいな）類の変更履歴を管理するところ

・commit…index を local repository に反映（記録）させる操作

・pull… remote repositoryをlocal repositoryへ反映させる操作
remote repository と local repository との差分がダウンロードされる

・push… local repository を remote repositoryへ反映させる操作

・fetch…リモートリポジトリからローカルリポジトリに最新の情報を取得させる
pullと違って local repository のファイルを更新しない

・branch…主導で動いているプロジェクト本体から分岐させることにより
プロジェクト本体に影響を与えずに開発を行える機能（詳細後ほど）

・merge…皆のそれぞれのブランチを統合すること
3

・clone… repositoryのファイルやディレクトリを、そのまんまローカル環境にダウンロードする
みたいな作業（開発を行う際に最初に1回だけする作業になります）



開発チーム皆が
アクセス可能

remote repository
（皆のファイルの保管場所）

C太郎さんB子さんA子さん

開発チーム
自分のPCに
clone可能

repository
ファイルやディレクトリ類の変更履歴を管理するところで、
特にインターネット環境下で管理するリポジトリ
（Gitで指定して、自分のPCにダウンロードした分）をリモートリポジトリという！
インターネットに保管しているので、全世界の人がリモートリポジトリにアクセス可能！

Gitの全体構成図 開発チームバージョン①
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index

add commit

work tree

local repository
（自分のPC内にある保管場所）

.html

.css

work tree
…実際に作業しているディレクトリのこと

index
…ワークツリーとローカルリポジトリの間に置かれていて、

ワークツリーで編集したディレクトリを、
リポジトリにコミットするための準備場所！
必要なファイルだけをコミットできたり、
無駄なファイル交換が防げる！

local repository
…特に自分のPCで管理するリポジトリ

（Gitで指定して、自分のPCにダウンロード
した分）をローカルリポジトリという

C太郎さんB子さんA子さん

Gitの全体構成図 開発チームバージョン②
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ブランチとは？①

・また、履歴の流れを分岐して記録してくれる

分岐したブランチは、他のブランチの影響を受けないので

同じリポジトリ内で複数の変更を同時に進められます！

・さらに分岐したブランチは、

他のブランチと統合（marge）することで

ひとつのブランチ（main branch）にまとめられる！

・主導で動いているプロジェクト本体から分岐させることにより、

プロジェクト本体に影響を与えずに開発を行える機能

branchとは…

↑ 木の枝に例えられがち
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ブランチの説明②

ファッションサイト
完成〜！

商品検索

main branch

C太郎 branch

B夫 branch

A美 branch

チームのメンバーは、他のメンバーの作業の影響を受けないように、
main branchから、自分の作業用branchをそれぞれ作成し、
そして作業が終わったメンバーは、main branchに自分のブランチの変更を読み込ませる！

商品検索

marge
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marge

marge



local repositoryでの操作とは？①

ローカルリポジトリでの操作とは、普段マウスでクリックして操作しているのを
文字を打って操作するということ

新しいファイルを作るときは
「新規ファイル」ボタンをクリックして
名前を「index_3_3」に変更する

新しいファイルを作るときは
「mkdir index_3_3」と文字を打って
作成する

普段の操作 local repositoryでの操作
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どこで文字を打って操作するの？

スタートメニューを右クリックすると
「プロンプト」出てくる

※デスクトップの虫眼鏡で
「Git Bash」検索でも出てくる！

画面右上虫眼鏡マーク押して「ターミナル」と検索

Windowsの場合
Git Bash 使用

MacBookの場合
ターミナル 使用

この黒い画面で文字を打って操作します！
9

local repositoryでの操作とは？②
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Gitでの課題提出方法

Gitは他の人の作業もいじれるので、
実際の現場で大きなミスをすると、「他の人の作業を抹消してしまう」なんてことも起こり得ます。
そうならないためにも、今のうちにどんどん失敗して、
実際現場に出たときに大きなミスをしないようにしましょう！

それではさっそく、
コマンドプロトコルもしくはターミナルを開いて
課題を提出する下準備からしてきましょう！
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Gitでの課題提出方法【準備】

1.「techUP_study」をcloneしたい場所を指定する（この図だと「Documents」が指定場所）

2.「git clone #URL」 を打ち込む

3.「ls」で1で指定した場所の中身を確認

4.「cd techUP_study」で「techUP_study」に移動

c

「techUP_study」が出れば
cloneできている

5.「ls」で自分の名前が出てくればclone完了

「ls」直下に
自分の名前出てくればOK！

赤線：現在地
黄色：自分で打つ文字
緑色：マウス操作
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Gitでの課題提出方法①

1.「cd ~」でローカルの最上階層へ移動

2.「cd 11ページでcloneした場所」で techUP_studyをcloneした場所へ移動

（この図だと「Documents」が指定場所）

3.「ls」で中身を確認

4.「cd techUP_study」で「techUP_study」へ移動

5.「ls」で中身を確認し、「番号＿自分」の名前が出てくればOK

4で「techUP_study」に移動

「ls」直下に
自分の名前出てくればOK！
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Gitでの課題提出方法②

6.「cd 番号＿自分の名前」でtechUP＿study内の自分のフォルダへ移動

7.「ls」で中身を確認（この画面は閉じずに8の操作へ）

※この状態ではまだ、今回提出の「index3-30」はまだ出てこない

8.提出するフォルダを、マウス操作でcloneした場所に移動

※この時提出するフォルダは、必ずコピーをとってローカルに

保存しておく！

必ずコピーをとって
ローカルに保存！

今回提出したい課題
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Gitでの課題提出方法③
9. 7の画面を再度開き「ls」で中身を確認

10.「git branch」で今どこのbranchにいるかを確認 (もしmain以外にいる状態なら、main branchに移動)

11.「git pull」で main branch を最新の状態に更新 (main branchにいる状態で行う)

12.「git branch feature/名前_課題」でbranchを作成

13.「git branch」で12でちゃんとbranch作成できているか確認
8のマウス操作が反映されている

緑文字が今自分がいるbranch

提出したいフォルダの
branchを作成する12で作成したのを

13で確認
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Gitでの課題提出方法④
14.「git checkout feature/名前_課題」で12で作成したbranchに切り替え

15.「git branch」で切り替えられてるか確認

16.「git diff」で差分がないかを確認（この時再提出の場合は1回目提出と2回目提出時の差分が表示される）

17.「git add .」で提出したいフォルダをbranchに追加する

18.「git status」でちゃんとaddできている確認

14で切り替えられてる！
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Gitでの課題提出方法⑤

19.「git commit –m “コメント”」でcommit

20.「git push –u origin feature/名前_課題」でpush

（修正版を同じブランチにpushする際は「-u」なしで「git push origin feature/名前_課題」）

21.「git status」でちゃんとpushできているか確認

この辺の長文は
あまり気にしなくて良い

むしろこの長文が出てきたら
正常にpushできている
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Gitでの課題提出方法⑥

22.Git hubに移動し、

・画面上部の緑枠

・画面左部の赤枠

があれば、ちゃんとcommitできている

23.緑ボタン「Compare&pull recuest」を押下
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Gitでの課題提出方法⑦

24.「base:main」から

「base:master」へ変更

25.アイコン吹き出し（小枠）を

「課題番号・名前・課題名」へ書き換え

26.大枠に「コメント」記載

27.緑ボタン「Create pull request」で

PullRequestする



19

Gitでの課題提出方法⑧

28.入力内容に不備がない確認

※この時「Merge pull request」は

まだ押下しない！！！

29.Discordで課題確認者へ提出した旨を報告
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30.課題が承認されたことを確認
このとき修正が必要な場合は、課題に修正をかけて
12で作成したbranchに再度pushする

補足：LGTMとは「Looks Good To Me」
の英略語で、訳すと「いいと思います」
という賛同の意味

31.「Merge pull request」を押下

32.「Confirm merge」を押下

33.「Delete branch」を押下し終了
（次の課題を提出するときはmain branchを.  

切り直してbranchを作成する。
常に新しく作成するbranchはmainから）

Gitでの課題提出方法⑨
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コンフリクトとは？

コンフリクトとは衝突を意味しています。
Gitではmargeを行う際に、branch内で同じファイルの同じ箇所で修正を行った時に
どの記述を優先したらいいか分からない状態のことです。

例えばこんなコンフリクトがあります…

ⅿaster branch

feature/ami_2_3

feature/ctaro_1_1

marge

marge

A美さん

C太郎さん

index.htmlの10行目変更

index.htmlの10行目変更

コンフリクト発生

プロジェクト内に共通のファイルがあり、そのファイルをまずA美さんが修正して、
それを知らずにC太郎さんが修正して、それがたまたま同じ箇所だったときなんかにコンフリクトする。
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どうやってコンフリクトを解消するか？①

②コンフリクトを解消するには、
Resolve conflictsをクリック！

①コンフリクトが起きると、
マージプルリクエストしようとしても
This branch has conflict〜
と表示されます！



23

どうやってコンフリクトを解消するか？②
Resolve conflictをクリックするとこの画面に移ります↓

<<<<<
<現在のブランチの変更内容>
=====
<他のブランチの変更内容>
>>>>>

➂9行目か11行目のどちらの記述が
正しいかは、このように表示されます！

（8行目〜12行目）

9行目は今いるブランチで自分が作業した変更内容です！
11行目が他のブランチで作業した変更内容です！
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どうやってコンフリクトを解消するか？➂

④この画面で目的の記述に整えます！

⑤整えたらMark as resolvedボタンをクリック！！
Gitにconflictが解決したことを知らせるボタンです
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どうやってコンフリクトを解消するか？④

⑥✓Resolvedになれば
上にCommit mergeボタンが表示されます！
このボタンをクリック！
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どうやってコンフリクトを解消するか？⑤

⑦⑥のCommit mergeボタンをクリックし
①のプルリクの画面に戻り
Merge pull requestが表示されたら
コンフリクト解消完了です！

techUPでは主にリモートでの解消方法を行いますので、
リモートでの解消方法を説明しましが、

実際、開発現場ではローカルで
コンフリクト解消を行うことが多いです！

ローカルでの解消方法も参考サイトを載せておきます
ので学習しておきましょう！！

↓↓↓↓↓↓
https://m-kenomemo.com/git-conflict/

https://m-kenomemo.com/git-conflict/
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