
分散型バージョン管理システム
（ファイルの変更履歴を管理してくれるシステムのひとつ）

別の開発内容でデバックが発生
した際に途中で開発を中断して、
branchを切り替えてデバック修
正ができる！
完了したら開発にまた戻ればOK

Git内で内容を更新するたびに
ファイルの変更履歴が
記録できるので、
バグが発生しても問題のコードを
見つけやすい！

1 32

1

Gitとは？

内容を変更するたびにcommit
（履歴またはバッアップ）するので、
コードを書いている途中で、
大きなミスをしても、
ミスする前の状態に戻すことが
できる！

Git

ローカル環境

index

add commit

index_2_3
提出したい！

Work tree

local repository
（自分のPC内にある保管場所）A子さん

.html

.css

index_2_3の中身

アクセス

remote repository
（皆のファイルの保管場所）

C太郎さんB子さんA子さん

techUP受講生

push

C太郎さんB子さんA子さん

fetch

Gitの全体構成図 techUPバージョン

pull

2

よく出てくる用語集

・repository …ファイルやディレクトリ（フォルダみたいな）類の変更履歴を管理するところ

・commit…index を local repository に反映（記録）させる操作

・pull… remote repositoryをlocal repositoryへ反映させる操作
remote repository と local repository との差分がダウンロードされる

・push… local repository を remote repositoryへ反映させる操作

・fetch…リモートリポジトリからローカルリポジトリに最新の情報を取得させる
pullと違って local repository のファイルを更新しない

・branch…主導で動いているプロジェクト本体から分岐させることにより
プロジェクト本体に影響を与えずに開発を行える機能（詳細後ほど）

・merge…皆のそれぞれのブランチを統合すること
3

・clone… repositoryのファイルやディレクトリを、そのまんまローカル環境にダウンロードする
みたいな作業（開発を行う際に最初に1回だけする作業になります）

開発チーム皆が
アクセス可能

remote repository
（皆のファイルの保管場所）

C太郎さんB子さんA子さん

開発チーム
自分のPCに
clone可能

repository
ファイルやディレクトリ類の変更履歴を管理するところで、
特にインターネット環境下で管理するリポジトリ
（Gitで指定して、自分のPCにダウンロードした分）をリモートリポジトリという！
インターネットに保管しているので、全世界の人がリモートリポジトリにアクセス可能！

Gitの全体構成図 開発チームバージョン①

4

index

add commit

work tree

local repository
（自分のPC内にある保管場所）

.html

.css

work tree
…実際に作業しているディレクトリのこと

index
…ワークツリーとローカルリポジトリの間に置かれていて、

ワークツリーで編集したディレクトリを、
リポジトリにコミットするための準備場所！
必要なファイルだけをコミットできたり、
無駄なファイル交換が防げる！

local repository
…特に自分のPCで管理するリポジトリ

（Gitで指定して、自分のPCにダウンロード
した分）をローカルリポジトリという

C太郎さんB子さんA子さん

Gitの全体構成図 開発チームバージョン②

5

ブランチとは？①

・また、履歴の流れを分岐して記録してくれる

分岐したブランチは、他のブランチの影響を受けないので

同じリポジトリ内で複数の変更を同時に進められます！

・さらに分岐したブランチは、

他のブランチと統合（marge）することで

ひとつのブランチ（main branch）にまとめられる！

・主導で動いているプロジェクト本体から分岐させることにより、

プロジェクト本体に影響を与えずに開発を行える機能

branchとは…

↑ 木の枝に例えられがち

6

ブランチの説明②

ファッションサイト
完成〜！

商品検索

main branch

C太郎 branch

B夫 branch

A美 branch

チームのメンバーは、他のメンバーの作業の影響を受けないように、
main branchから、自分の作業用branchをそれぞれ作成し、
そして作業が終わったメンバーは、main branchに自分のブランチの変更を読み込ませる！

商品検索

marge

7

marge

marge

local repositoryでの操作とは？①

ローカルリポジトリでの操作とは、普段マウスでクリックして操作しているのを
文字を打って操作するということ

新しいファイルを作るときは
「新規ファイル」ボタンをクリックして
名前を「index_3_3」に変更する

新しいファイルを作るときは
「mkdir index_3_3」と文字を打って
作成する

普段の操作 local repositoryでの操作

8

どこで文字を打って操作するの？

スタートメニューを右クリックすると
「プロンプト」出てくる

※デスクトップの虫眼鏡で
「Git Bash」検索でも出てくる！

画面右上虫眼鏡マーク押して「ターミナル」と検索

Windowsの場合
Git Bash 使用

MacBookの場合
ターミナル 使用

この黒い画面で文字を打って操作します！
9

local repositoryでの操作とは？②

10

Gitでの課題提出方法

Gitは他の人の作業もいじれるので、
実際の現場で大きなミスをすると、「他の人の作業を抹消してしまう」なんてことも起こり得ます。
そうならないためにも、今のうちにどんどん失敗して、
実際現場に出たときに大きなミスをしないようにしましょう！

それではさっそく、
コマンドプロトコルもしくはターミナルを開いて
課題を提出する下準備からしてきましょう！

11

Gitでの課題提出方法【準備】

1.「techUP_study」をcloneしたい場所を指定する（この図だと「Documents」が指定場所）

2.「git clone #URL」 を打ち込む

3.「ls」で1で指定した場所の中身を確認

4.「cd techUP_study」で「techUP_study」に移動

c

「techUP_study」が出れば
cloneできている

5.「ls」で自分の名前が出てくればclone完了

「ls」直下に
自分の名前出てくればOK！

赤線：現在地
黄色：自分で打つ文字
緑色：マウス操作

12

Gitでの課題提出方法①

1.「cd ~」でローカルの最上階層へ移動

2.「cd 11ページでcloneした場所」で techUP_studyをcloneした場所へ移動

（この図だと「Documents」が指定場所）

3.「ls」で中身を確認

4.「cd techUP_study」で「techUP_study」へ移動

5.「ls」で中身を確認し、「番号＿自分」の名前が出てくればOK

4で「techUP_study」に移動

「ls」直下に
自分の名前出てくればOK！

13

Gitでの課題提出方法②

6.「cd 番号＿自分の名前」でtechUP＿study内の自分のフォルダへ移動

7.「ls」で中身を確認（この画面は閉じずに8の操作へ）

※この状態ではまだ、今回提出の「index3-30」はまだ出てこない

8.提出するフォルダを、マウス操作でcloneした場所に移動

※この時提出するフォルダは、必ずコピーをとってローカルに

保存しておく！

必ずコピーをとって
ローカルに保存！

今回提出したい課題

14

Gitでの課題提出方法③
9. 7の画面を再度開き「ls」で中身を確認

10.「git branch」で今どこのbranchにいるかを確認 (もしmain以外にいる状態なら、main branchに移動)

11.「git pull」で main branch を最新の状態に更新 (main branchにいる状態で行う)

12.「git branch feature/名前_課題」でbranchを作成

13.「git branch」で12でちゃんとbranch作成できているか確認
8のマウス操作が反映されている

緑文字が今自分がいるbranch

提出したいフォルダの
branchを作成する12で作成したのを

13で確認

15

Gitでの課題提出方法④
14.「git checkout feature/名前_課題」で12で作成したbranchに切り替え

15.「git branch」で切り替えられてるか確認

16.「git diff」で差分がないかを確認（この時再提出の場合は1回目提出と2回目提出時の差分が表示される）

17.「git add .」で提出したいフォルダをbranchに追加する

18.「git status」でちゃんとaddできている確認

14で切り替えられてる！

16

Gitでの課題提出方法⑤

19.「git commit –m “コメント”」でcommit

20.「git push –u origin feature/名前_課題」でpush

（修正版を同じブランチにpushする際は「-u」なしで「git push origin feature/名前_課題」）

21.「git status」でちゃんとpushできているか確認

この辺の長文は
あまり気にしなくて良い

むしろこの長文が出てきたら
正常にpushできている

17

Gitでの課題提出方法⑥

22.Git hubに移動し、

・画面上部の緑枠

・画面左部の赤枠

があれば、ちゃんとcommitできている

23.緑ボタン「Compare&pull recuest」を押下

18

Gitでの課題提出方法⑦

24.「base:main」から

「base:master」へ変更

25.アイコン吹き出し（小枠）を

「課題番号・名前・課題名」へ書き換え

26.大枠に「コメント」記載

27.緑ボタン「Create pull request」で

PullRequestする

19

Gitでの課題提出方法⑧

28.入力内容に不備がない確認

※この時「Merge pull request」は

まだ押下しない！！！

29.Discordで課題確認者へ提出した旨を報告

20

30.課題が承認されたことを確認
このとき修正が必要な場合は、課題に修正をかけて
12で作成したbranchに再度pushする

補足：LGTMとは「Looks Good To Me」
の英略語で、訳すと「いいと思います」
という賛同の意味

31.「Merge pull request」を押下

32.「Confirm merge」を押下

33.「Delete branch」を押下し終了
（次の課題を提出するときはmain branchを.

切り直してbranchを作成する。
常に新しく作成するbranchはmainから）

Gitでの課題提出方法⑨

21

コンフリクトとは？

コンフリクトとは衝突を意味しています。
Gitではmargeを行う際に、branch内で同じファイルの同じ箇所で修正を行った時に
どの記述を優先したらいいか分からない状態のことです。

例えばこんなコンフリクトがあります…

ⅿaster branch

feature/ami_2_3

feature/ctaro_1_1

marge

marge

A美さん

C太郎さん

index.htmlの10行目変更

index.htmlの10行目変更

コンフリクト発生

プロジェクト内に共通のファイルがあり、そのファイルをまずA美さんが修正して、
それを知らずにC太郎さんが修正して、それがたまたま同じ箇所だったときなんかにコンフリクトする。

22

どうやってコンフリクトを解消するか？①

②コンフリクトを解消するには、
Resolve conflictsをクリック！

①コンフリクトが起きると、
マージプルリクエストしようとしても
This branch has conflict〜
と表示されます！

23

どうやってコンフリクトを解消するか？②
Resolve conflictをクリックするとこの画面に移ります↓

<<<<<
<現在のブランチの変更内容>
=====
<他のブランチの変更内容>
>>>>>

➂9行目か11行目のどちらの記述が
正しいかは、このように表示されます！

（8行目〜12行目）

9行目は今いるブランチで自分が作業した変更内容です！
11行目が他のブランチで作業した変更内容です！

24

どうやってコンフリクトを解消するか？➂

④この画面で目的の記述に整えます！

⑤整えたらMark as resolvedボタンをクリック！！
Gitにconflictが解決したことを知らせるボタンです

25

どうやってコンフリクトを解消するか？④

⑥✓Resolvedになれば
上にCommit mergeボタンが表示されます！
このボタンをクリック！

26

どうやってコンフリクトを解消するか？⑤

⑦⑥のCommit mergeボタンをクリックし
①のプルリクの画面に戻り
Merge pull requestが表示されたら
コンフリクト解消完了です！

techUPでは主にリモートでの解消方法を行いますので、
リモートでの解消方法を説明しましが、

実際、開発現場ではローカルで
コンフリクト解消を行うことが多いです！

ローカルでの解消方法も参考サイトを載せておきます
ので学習しておきましょう！！

↓↓↓↓↓↓
https://m-kenomemo.com/git-conflict/

https://m-kenomemo.com/git-conflict/

	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26

